Langsung ke konten utama

Spektrofotometri


Spektrofotometri
Spektrofotometri merupakan suatu metoda analisa yang didasarkan pada pengukuran serapan  sinar monokromatis oleh suatu lajur larutan berwarna pada panjang gelombamg spesifik dengan menggunakan monokromator prisma atau kisi difraksi dengan detektor fototube.
Spektrofotometer adalah alat untuk mengukur transmitan atau absorban suatu sampel sebagai fungsi panjang gelombang.Sedangkan pengukuran menggunakan spektrofotometer ini, metoda yang digunakan sering disebut dengan spektrofotometri.
Spektrofotometri dapat dianggap sebagai perluasan suatu pemeriksaan visual dengan studi yang lebih mendalam dari absorbsi energi.Absorbsi radiasi oleh suatu sampel diukur pada berbagai panjang gelombangdan dialirkan oleh suatu perkam untuk menghasilkan spektrum tertentu yang khas untuk komponen yang berbeda.
Absorbsi sinar oleh larutan mengikuti hukum Lambert-Beer, yaitu :
Hukum_Lambert_Beer
A =     log ( Io / It )         =  a b c
Keterangan  : Io = Intensitas sinar datang
It = Intensitas sinar yang diteruskan
a = Absorptivitas
b = Panjang sel/kuvet
c = konsentrasi (g/l)
A = Absorban
Spektrofotometri merupakan bagian dari fotometri dan dapat dibedakan dari filter fotometri sebagai berikut :
1. Daerah jangkauan spektrum
Filter fotometr hanya dapat digunakan untuk mengukur serapan sinar tampak (400-750 nm). Sedangkan spektrofotometer dapat mengukur serapan di daerah tampak, UV (200-380 nm) maupun IR (> 750 nm).
2. Sumber sinar
Sesuai dengan daerah jangkauan spektrumnya maka spektrofotometer menggunakan sumber sinar yang berbeda pada masing-masing daerah (sinar tampak, UV, IR). Sedangkan sumber sinar filter fotometer hanya untuk daerah tampak.
3. Monokromator
Filter fotometere menggunakan filter sebagai monokrmator. Tetapi pada spektro digunakan kisi atau prisma yang daya resolusinya lebih baik.
4. Detektor
-   Filter fotometer menggunakan detektor fotosel
-   Spektrofotometer menggunakan tabung penggandaan foton atau fototube.
Komponen utama dari spektrofotometer yaitu :
  1. 1. Sumber cahaya
Untuk radisi kontinue :
-         Untuk daerah UV dan daerah tampak :
-         Lampu wolfram (lampu pijar) menghasilkan spektrum kontiniu pada gelombang 320-2500 nm.
-         Lampu hidrogen atau deutrium (160-375 nm)
-         Lampu gas xenon (250-600 nm)
Untuk daerah IR
Ada tiga macam sumber sinar yang dapat digunakan :
-         Lampu Nerst,dibuat dari campuran zirkonium oxida (38%) Itrium oxida  (38%) dan erbiumoxida (3%)
-         Lampu globar dibuat dari silisium Carbida (SiC).
-         Lampu Nkrom terdiri dari pita nikel krom dengan panjang gelombang 0,4 – 20 nm
-      Spektrum radiasi garis UV atau tampak :
-       Lampu uap (lampu Natrium, Lampu Raksa)
-       Lampu katoda cekung/lampu katoda berongga
-       Lampu pembawa muatan dan elektroda (elektrodeless dhischarge lamp)
-       Laser
  1. 2. Pengatur Intensitas
Berfungsi untuk mengatur intensitas sinar yang dihasilkan oleh sumber cahaya agar sinar yang masuk tetap konstan.
  1. 3. Monokromator
Berfungsi untuk merubah sinar polikromatis menjadi sinar monokromatis sesuai yang dibutuhkan oleh pengukuran
Macam-macam monokromator :
-   Prisma
-   kaca untuk daerah sinar tampak
-   kuarsa untuk daerah UV
-   Rock salt (kristal garam) untuk daerah IR
-  Kisi difraksi
Keuntungan menggunakan kisi :
-   Dispersi sinar merata
-   Dispersi lebih baik dengan ukuran pendispersi yang sama
-   Dapat digunakan dalam seluruh jangkauan spektrum
  1. 4. Kuvet
Pada pengukuran di daerah sinar tampak digunakan kuvet kaca dan daerah UV digunakan kuvet kuarsa serta kristal garam untuk daerah IR.
  1. 5. Detektor
Fungsinya untuk merubah sinar menjadi energi listrik yang sebanding dengan besaran yang dapat diukur.
Syarat-syarat ideal sebuah detektor :
-         Kepekan yang tinggi
-         Perbandingan isyarat atau signal dengan bising tinggi
-         Respon konstan pada berbagai panjang gelombang.
-         Waktu respon cepat dan signal minimum tanpa radiasi.
-         Signal listrik yang dihasilkan harus sebanding dengan tenaga radiasi.
Macam-macam detektor :
-    Detektor foto (Photo detector)
-      Photocell
-      Phototube
-      Hantaran foto
-      Dioda foto
-      Detektor panas
  1. 6. Penguat (amplifier)
Berfungsi untuk memperbesar arus yang dihasilkan oleh detektor agar dapat dibaca oleh indikator.
  1. 7. Indikator
Dapat berupa :
-         Recorder
-         Komputer



Spektrofotometri Infra Merah
Ditulis oleh EG Giwangkara S
Spektrofotometri Infra Red atau Infra Merah merupakan suatu metode yang mengamati interaksi molekul dengan radiasi elektromagnetik yang berada pada daerah panjang gelombang 0,75 – 1.000 µm atau pada Bilangan Gelombang 13.000 – 10 cm-1. Radiasi elektromagnetik dikemukakan pertama kali oleh James Clark Maxwell, yang menyatakan bahwa cahaya secara fisis merupakan gelombang elektromagnetik, artinya mempunyai vektor listrik dan vektor magnetik yang keduanya saling tegak lurus dengan arah rambatan.
Gambaran berkas radiasi elektromagnetik diperlihatkan pada Gambar 1 berikut :
Berkas radiasi gelombang elektromagnetik
Saat ini telah dikenal berbagai macam gelombang elektromagnetik dengan rentang panjang gelombang tertentu.Spektrum elektromagnetik merupakan kumpulan spektrum dari berbagai panjang gelombang. Berdasarkan pembagian daerah panjang gelombang pada Tabel 1 dan Gambar 2, sinar infra merah dibagi atas tiga daerah, yaitu:
a. Daerah Infra Merah dekat.
b. Daerah Infra Merah pertengahan.
c. Daerah infra merah jauh..
Tabel pembagian spektrum
Gambar pembagian radiasi elektromagnetik
Dari pembagian daerah spektrum elektromagnetik tersebut diatas, daerah panjang gelombang yang digunakan pada alat spektrofotometer infra merah adalah pada daerah infra merah pertengahan, yaitu pada panjang gelombang 2,5 – 50 µm atau pada bilangan gelombang 4.000 – 200 cm-1. Satuan yang sering digunakan dalam spektrofotometri infra merah adalah Bilangan Gelombang (Nu bar) atau disebut juga sebagai Kaiser.
Interaksi Sinar Infra Merah Dengan Molekul
Berkas radiasi elektromagnetikDasar Spektroskopi Infra Merah dikemukakan oleh Hooke dan didasarkan atas senyawa yang terdiri atas dua atom atau diatom yang digambarkan dengan dua buah bola yang saling terikat oleh pegas seperti tampak pada gambar disamping ini. Jika pegas direntangkan atau ditekan pada jarak keseimbangan tersebut maka energi potensial dari sistim tersebut akan naik.
Setiap senyawa pada keadaan tertentu telah mempunyai tiga macam gerak, yaitu :
  1. Gerak Translasi, yaitu perpindahan dari satu titik ke titik lain.
  2. Gerak Rotasi, yaitu berputar pada porosnya, dan
  3. Gerak Vibrasi, yaitu bergetar pada tempatnya.
Bila ikatan bergetar, maka energi vibrasi secara terus menerus dan secara periodik berubah dari energi kinetik ke energi potensial dan sebaiknya. Jumlah energi total adalah sebanding dengan frekwensi vibrasi dan tetapan gaya ( k ) dari pegas dan massa ( m1 dan m2 ) dari dua atom yang terikat. Energi yang dimiliki oleh sinar infra merah hanya cukup kuat untuk mengadakan perubahan vibrasi.
Panjang gelombang atau bilangan gelombang dan kecepatan cahaya dihubungkan dengan frekwensi melalui bersamaan berikut :
http://www.chem-is-try.org/wp-content/migrated_images/artikel/emc2.jpg
Energi yang timbul juga berbanding lurus dengan frekwesi dan digambarkan dengan persamaan Max Plank :
http://www.chem-is-try.org/wp-content/migrated_images/artikel/ehv.jpg
sehingga :
http://www.chem-is-try.org/wp-content/migrated_images/artikel/mc.jpg
dimana :
E = Energi, Joule
h = Tetapan Plank ; 6,6262 x 10-34 J.s
c = Kecepatan cahaya ; 3,0 x 1010 cm/detik
n = indeks bias (dalam keadaan vakum harga n = 1)
l = panjang gelombang ; cm
u = frekwensi ; Hertz
Dalam spektroskopi infra merah panjang gelombang dan bilangan gelombang adalah nilai yang digunakan untuk menunjukkan posisi dalam spektrum serapan. Panjang gelombang biasanya diukur dalam mikron atau mikro meter ( µm ). Sedangkan bilangan gelombang ( Nu bar) adalah frekwensi dibagi dengan kecepatan cahaya, yaitu kebalikan dari panjang gelombang dalam satuan cm-1. Persamaan dari hubungan kedua hal tersebut diatas adalah :
http://www.chem-is-try.org/wp-content/migrated_images/artikel/nulamda1.jpg
Posisi pita serapan dapat diprediksi berdasarkan teori mekanikal tentang osilator harmoni, yaitu diturunkan dari hukum Hooke tentang pegas sederhana yang bergetar, yaitu :
http://www.chem-is-try.org/wp-content/migrated_images/artikel/nulamda2.jpg
dimana :
http://www.chem-is-try.org/wp-content/migrated_images/artikel/nulamda3.jpg
Keterangan :
c = kecepatan cahaya : 3,0 x 1010 cm/detik
k = tetapan gaya atau kuat ikat, dyne/cm
µ = massa tereduksi
m = massa atom, gram
Setiap molekul memiliki harga energi yang tertentu. Bila suatu senyawa menyerap energi dari sinar infra merah, maka tingkatan energi di dalam molekul itu akan tereksitasi ke tingkatan energi yang lebih tinggi. Sesuai dengan tingkatan energi yang diserap, maka yang akan terjadi pada molekul itu adalah perubahan energi vibrasi yang diikuti dengan perubahan energi rotasi.
Perubahan Energi Vibrasi
Atom-atom di dalam molekul tidak dalam keadaan diam, tetapi biasanya terjadi peristiwa vibrasi.Hal ini bergantung pada atom-atom dan kekuatan ikatan yang menghubungkannya.Vibrasi molekul sangat khas untuk suatu molekul tertentu dan biasanya disebut vibrasi finger print. Vibrasi molekul dapat digolongkan atas dua golongan besar, yaitu :
  1. Vibrasi Regangan (Streching)
  2. Vibrasi Bengkokan (Bending)
Vibrasi Regangan (Streching)
Dalam vibrasi ini atom bergerak terus sepanjang ikatan yang menghubungkannya sehingga akan terjadi perubahan jarak antara keduanya, walaupun sudut ikatan tidak berubah. Vibrasi regangan ada dua macam, yaitu:
  1. Regangan Simetri, unit struktur bergerak bersamaan dan searah dalam satu bidang datar.
  2. Regangan Asimetri, unit struktur bergerak bersamaan dan tidak searah tetapi masih dalam satu bidang datar.
Jenis vibrasi regangan
Vibrasi Bengkokan (Bending)
Jika sistim tiga atom merupakan bagian dari sebuah molekul yang lebih besar, maka dapat menimbulkan vibrasi bengkokan atau vibrasi deformasi yang mempengaruhi osilasi atom atau molekul secara keseluruhan. Vibrasi bengkokan ini terbagi menjadi empat jenis, yaitu :
  1. Vibrasi Goyangan (Rocking), unit struktur bergerak mengayun asimetri tetapi masih dalam bidang datar.
  2. Vibrasi Guntingan (Scissoring), unit struktur bergerak mengayun simetri dan masih dalam bidang datar.
  3. Vibrasi Kibasan (Wagging), unit struktur bergerak mengibas keluar dari bidang datar.
  4. Vibrasi Pelintiran (Twisting), unit struktur berputar mengelilingi ikatan yang menghubungkan dengan molekul induk dan berada di dalam bidang datar.
Jenis vibrasi bengkokan
Daerah Spektrum Infra Merah
Para ahli kimia telah memetakan ribuan spektrum infra merah dan menentukan panjang gelombang absorbsi masing-masing gugus fungsi.Vibrasi suatu gugus fungsi spesifik pada bilangan gelombang tertentu.Dari Tabel 2 diketahui bahwa vibrasi bengkokan C–H dari metilena dalam cincin siklo pentana berada pada daerah bilangan gelombang 1455 cm-1.Artinya jika suatu senyawa spektrum senyawa X menunjukkan pita absorbsi pada bilangan gelombang tersebut tersebut maka dapat disimpulkan bahwa senyawa X tersebut mengandung gugus siklo pentana.
Vibrasi karakteristik dasar dari hidrokarbon jenuh
Daerah Identifikasi
Vibrasi yang digunakan untuk identifikasi adalah vibrasi bengkokan, khususnya goyangan (rocking), yaitu yang berada di daerah bilangan gelombang 2000 – 400 cm-1.Karena di daerah antara 4000 – 2000 cm-1 merupakan daerah yang khusus yang berguna untuk identifkasi gugus fungsional.Daerah ini menunjukkan absorbsi yang disebabkan oleh vibrasi regangan.Sedangkan daerah antara 2000 – 400 cm-1 seringkali sangat rumit, karena vibrasi regangan maupun bengkokan mengakibatkan absorbsi pada daerah tersebut.
Dalam daerah 2000 – 400 cm-1 tiap senyawa organik mempunyai absorbsi yang unik, sehingga daerah tersebut sering juga disebut sebagai daerah sidik jari (fingerprint region). Meskipun pada daerah 4000 – 2000 cm-1 menunjukkan absorbsi yang sama, pada daerah 2000 – 400 cm-1 juga harus menunjukkan pola yang sama sehingga dapat disimpulkan bahwa dua senyawa adalah sama.

Komentar

Postingan populer dari blog ini

Memperbaiki Microphone Headset Yang Tidak Mengeluarkan Suara

Internet merupakan sarana komunikasi yang murah dengan menggunakan microphone dan juga aplikasi seperti Skype, YM, dsb. Pernahkah pada suatu ketika anda mengalami microphone / headset yang tidak mengeluarkan suara meskipun kabel jack terhubung dengan baik? Atau mungkin microphone yang justrumengeluarkan suara ketika dihubungkan dengan komputer lain. Pada tulisan kali ini akan menjelaskan beberapa cara untuk mendeteksi penyebabnya. Memperbaiki Microphone Headset Yang Tidak Mengeluarkan Suara Langkah pertama untuk mengatasi permasalahan headset,atau microphone yang tidak mengeluarkan suara adalah memastikan bahwa perangkat tersebut masih berfungsi dengan baik (tidak rusak). Untuk memastikan, anda dapat mencobanya pada beberapa komputer yang berlainan. Bila headset dalam keadaan baik maka anda dapat beralih pada beberapa settingan di komputer anda agar memastikan bahwa ketiga poin dibawah ini ter-setting dalam keadaan benar: Port penghubung Microphone / HeadsetDriver & Settingan Mic…

PENJELASAN DARI SETIAP SUBBIDANG SKA (Sertifikat Keahlian)

Bagi Kawan-kawan Kontraktor yang baru mau buat SKA sebagai tenaga ahli ataupun sebagai persyaratan untuk pengurusan SBU, berikut sedikit penjelasan tentang penjabaran subbidang SKA tersebut:

1.Arsitektur ·Arsitek adalah seorang ahli yang memiliki kompetensi untuk merancang dan mengawasi pelaksanaan bangunan gedung, perkotaan dan lingkungan binaan, yang meliputi aspek astetika, budaya, dan sosial. ·Ahli desain interior adalah seorang ahli yang memiliki kompetensi seni dan ilmu merancang ruangan dalam bangunan dengan tujuan untuk menciptakan ruang yang fungsional, estetika dan struktur keindahan dan manfaat suatu bangunan. ·Ahli lansekap adalah seorang ahli yang memiliki kompetensi seni dan ilmu merancang lansekap (pertamanan) dengan tujuan untuk menciptakan ruang pertamanan yang fungsional, estetika dan struktur keindahan dan manfaat suatu pertamanan atau kawasan. ·Ahli Iluminasi adalah seorang ahli yang memilikikompetensi merancang tata cahaya, baik di luar bangunan maupun di dalam ruangan…

Anda ingin membuat tulisan atau nama anda sendiri dibuat dalam berbagai bentuk.

Anda ingin membuat tulisan atau nama anda sendiri dibuat dalam berbagai bentuk.
Ketik beberapa kata, pisahkan kata-kata tersebut dengan koma dan tekan tombol “Enter”. Anda dapat juga memilih satu s/d 3 kata atau merubahnya setiap warna pada kata tersebut. Menarik bukan?  Apabila anda ingin mencobanya silakan Klik Disini